

T-1702-895 Series

High-Efficiency Transmission Diffraction Grating

PRODUCT OVERVIEW

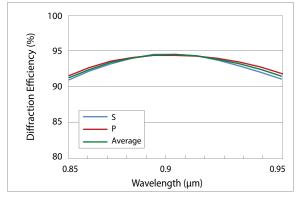
T-1702-895 series lithographically patterned transmission diffraction grating is designed to be used in demanding industrial applications (Raman and other types of spectroscopy, OCT, datacom, pulse compression and high power beam combining). It is characterized by high efficiency, low polarization sensitivity and high power handling. Gratings produced by II-VI undergo extensive quality assurance, have proven reliability track record and competitively priced.

Product Key

T - 1702 - 895 - 24.7x15 - 94

Transmission Grooves/mm Width x Height, mm Min Efficiency, %

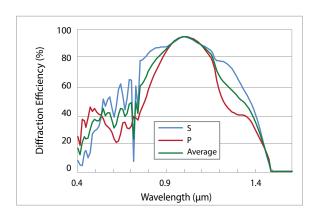
Central Wavelenth, nm $\;\;$ Groove || to Height

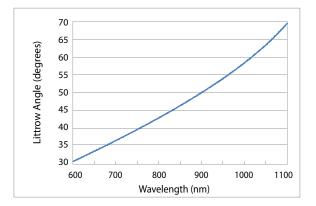

WEBSITE ii-vi.com


contact us sales@ii-vi.com

T-1702-895 Series High-Efficiency Transmission Diffraction Grating

The polarization independent transmission grating has 1702.13 lines/mm and designed to operate near 895 nm central wavelength at 49.5° angle of incidence (AOI). Extended wavelength range performance and angular sensitivity information is provided below.





Typical absolute diffraction efficiency at AOI 49.5°*

Typical absolute diffraction efficiency at AOI 49.5°*

Extended operational range: The grating may operate over broader wavelength range provided that suitable antireflective coating and angle of incidence is used. The plot below shows simulated performance* over extended range assuming fixed input angle (designed Littrow angle of 49.5°), not accounting for AR coating losses. Optimal input angle for each wavelength is shown on the right.

Typical absolute diffraction efficiency at AOI 49.5° *

Optimal input angle for each wavelength (Littrow condition)

Specifications

Description		
Line Density	1702.13	Lines/mm
Line Density Uniformity	0.001	Lines/mm
Angle of Incidence (AOI) 1	49.5 ± 1	0
Wavelength Range	895±20	nm
Optimal polarization ²	Any	
Diffraction Efficiency ³	>94 (average polarization)	%
Dimension tolerances	±0.2 for grating size and width	
Substrate Thickness	0.95 ± 0.050 mm	
Material	Fused silica, dielectric layers, no polymers	
Scratch/Dig ⁴	60/40 standard, 40/20 and 20/10 custom	

Notes

^{*} Simulated performance shown (for guidance only)

¹ Optical grating performance will remain similar over larger variation in angle of incidence.

² S-polarization: electric field vector is parallel to the grating lines; P polarization is orthogonal to S.

³ Worst case in the operational wavelength range for average polarization.

⁴ As per MIL-PRF-1380B in the clear aperture; no requirements outside of the clear aperture.